Distributivity (spectrum) of forcing notions

Marlene Koelbing and Wolfgang Wohofsky joint work with Vera Fischer

Universität Wien (Kurt Gödel Research Center)

marlenekoelbing@web.de
wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis 2020, section Set Theory & Topology Hejnice, Czech Republic

27th Jan 2020

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}):=\mathsf{least}\;\lambda$ such that \mathbb{P} is not λ -distributive (the distributivity of \mathbb{P}).

For maximal antichains A and B,

B refines $A :\iff \forall q \in B \exists p \in A (q \leq p)$.

Proposition

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

For maximal antichains A and B,

B refines $A :\iff \forall q \in B \exists p \in A (q \leq p)$.

Proposition

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

For maximal antichains A and B,

$$B \text{ refines } A :\iff \forall q \in B \ \exists p \in A \ (q \leq p).$$

Proposition

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

For maximal antichains A and B,

$$B \text{ refines } A :\iff \forall q \in B \exists p \in A \ (q \leq p).$$

Proposition

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ..., what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

• $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$

- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ..., what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - ▶ in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ..., what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - ▶ in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

- 4 同 ト - 4 三 ト - 4 三

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - ▶ in fact, $\mathcal{P}(\kappa)/\langle\kappa$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

- **(())) (())) ())**

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<}\kappa$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/\langle\kappa$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - ▶ so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

- 4 同 ト - 4 三 ト - 4 三

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$
- So let us look at the (distributivity) spectrum instead!

(本間) (本語) (本語)

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\kappa}$
 - $\kappa^+ \leq \mathfrak{t}_\kappa \leq 2^\kappa$
- So let us look at the (distributivity) spectrum instead!

(4回) (4回) (4回)

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<\kappa}$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of \mathfrak{t} yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$

•
$$\kappa^+ \leq \mathfrak{t}_\kappa \leq 2^\kappa$$

• So let us look at the (distributivity) spectrum instead!

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<}\kappa$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ:
 - ▶ $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of t yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$

•
$$\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$$

• So let us look at the (distributivity) spectrum instead!

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We say that $\lambda \in FRESH(\mathbb{P})$ if in some extension of V by \mathbb{P} ,

there exists a fresh function on λ ,

i.e., a function $f : \lambda \to Ord$ with a $f \notin V$, but a $f \upharpoonright \gamma \in V$ for every $\gamma < \lambda$.

Note: $\lambda \in FRESH(\mathbb{P}) \iff cf(\lambda) \in FRESH(\mathbb{P})$

So from now on, we only talk about regular cardinals λ .

- $\min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$
- $FRESH(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), |\mathbb{P}|]$

We say that $\lambda \in FRESH(\mathbb{P})$ if in some extension of V by \mathbb{P} ,

there exists a fresh function on λ ,

i.e., a function $f : \lambda \to Ord$ with a $f \notin V$, but a $f \upharpoonright \gamma \in V$ for every $\gamma < \lambda$.

Note: $\lambda \in FRESH(\mathbb{P}) \iff cf(\lambda) \in FRESH(\mathbb{P})$

So from now on, we only talk about regular cardinals λ .

- $\min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$
- $FRESH(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), |\mathbb{P}|]$

We say that $\lambda \in FRESH(\mathbb{P})$ if in some extension of V by \mathbb{P} ,

there exists a fresh function on λ ,

i.e., a function $f : \lambda \to Ord$ with a $f \notin V$, but a $f \upharpoonright \gamma \in V$ for every $\gamma < \lambda$.

Note: $\lambda \in FRESH(\mathbb{P}) \iff cf(\lambda) \in FRESH(\mathbb{P})$

So from now on, we only talk about regular cardinals λ .

- $\min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$
- $FRESH(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), |\mathbb{P}|]$

We say that $\lambda \in FRESH(\mathbb{P})$ if in some extension of V by \mathbb{P} ,

there exists a fresh function on λ ,

i.e., a function $f : \lambda \to Ord$ with a $f \notin V$, but a $f \upharpoonright \gamma \in V$ for every $\gamma < \lambda$.

Note: $\lambda \in FRESH(\mathbb{P}) \iff cf(\lambda) \in FRESH(\mathbb{P})$

So from now on, we only talk about regular cardinals λ .

- $\min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$
- $FRESH(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), |\mathbb{P}|]$

< A > < 3

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree \mathcal{T} (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is $\mathbb P$ being δ -c.c. sufficient? No: consider a Suslin tree $\mathcal T$ (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree \mathcal{T} (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin \mathsf{FRESH}(\mathsf{T})$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree T (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree \mathcal{T} (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree T (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree \mathcal{T} (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/fin)$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\mathsf{fin} \mathsf{ collapses } \mathfrak{c} \mathsf{ to } \mathfrak{h}.$

Corollary

 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

```
\mathcal{P}(\kappa)/{<\kappa} collapses 2^{\kappa} to \omega (assuming 2^{<\kappa} = \kappa).
```

Corollary

$FRESH(\mathcal{P}(\kappa)/<\kappa) = [\omega, 2^{\kappa}] \text{ (assuming } 2^{<\kappa} = \kappa).$

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\text{fin collapses }\mathfrak{c}$ to \mathfrak{h} .

Corollary

 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

```
\mathcal{P}(\kappa)/{<\kappa} collapses 2^{\kappa} to \omega (assuming 2^{<\kappa} = \kappa).
```

Corollary

$FRESH(\mathcal{P}(\kappa)/<\kappa) = [\omega, 2^{\kappa}] \text{ (assuming } 2^{<\kappa} = \kappa).$

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\mathsf{fin} \text{ collapses } \mathfrak{c} \text{ to } \mathfrak{h}.$

Corollary

 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

```
\mathcal{P}(\kappa)/{<}\kappa collapses 2^{\kappa} to \omega (assuming 2^{<\kappa}=\kappa).
```

Corollary

$FRESH(\mathcal{P}(\kappa)/<\kappa) = [\omega, 2^{\kappa}] \text{ (assuming } 2^{<\kappa} = \kappa).$

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\mathsf{fin} \text{ collapses } \mathfrak{c} \text{ to } \mathfrak{h}.$

Corollary

 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

$$\mathcal{P}(\kappa)/{<\kappa}$$
 collapses 2^{κ} to ω (assuming $2^{<\kappa} = \kappa$).

Corollary

$FRESH(\mathcal{P}(\kappa)/<\kappa) = [\omega, 2^{\kappa}] \text{ (assuming } 2^{<\kappa} = \kappa).$

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\mathsf{fin} \text{ collapses } \mathfrak{c} \text{ to } \mathfrak{h}.$

Corollary

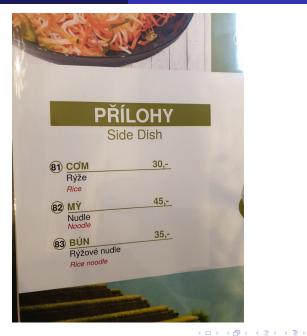
 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

$$\mathcal{P}(\kappa)/{<\kappa}$$
 collapses 2^{κ} to ω (assuming $2^{<\kappa} = \kappa$).

Corollary

$$FRESH(\mathcal{P}(\kappa)/{<}\kappa) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$).



Koelbing/Wohofsky (KGRC)

Distributivity (spectrum) of forcing notions

▶ ৰ ≣ ▶ ≣ ৩৫. Hejnice, 2020 8 / 21

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

- A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),
- A_{η} refines A_{ξ} (for each $\xi < \eta < \lambda$),
 - $\blacktriangleright \ A_{\eta} \text{ refines } A_{\xi} : \Longleftrightarrow \forall q \in A_{\eta} \ \exists p \in A_{\xi} \ (q \leq p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - $\blacktriangleright \ q \text{ intersects } \mathcal{A} : \Longleftrightarrow \forall \xi < \lambda \ \exists p \in A_{\xi} \ (q \leq p)$
- Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

 $\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

• A_{η} refines A_{ξ} (for each $\xi < \eta < \lambda$),

• A_{η} refines $A_{\xi} :\iff \forall q \in A_{\eta} \; \exists p \in A_{\xi} \; (q \leq p)$

- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - $\blacktriangleright \ q \text{ intersects } \mathcal{A} : \Longleftrightarrow \forall \xi < \lambda \ \exists p \in A_{\xi} \ (q \leq p)$
- Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

```
\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})
```

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$$A_\eta$$
 refines A_ξ (for each $\xi < \eta < \lambda$),

 $\blacktriangleright \ A_{\eta} \text{ refines } A_{\xi} : \Longleftrightarrow \forall q \in A_{\eta} \ \exists p \in A_{\xi} \ (q \leq p)$

• the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .

► q intersects A : $\iff \forall \xi < \lambda \exists p \in A_{\xi} \ (q \le p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

```
\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})
```

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$$A_\eta$$
 refines A_ξ (for each $\xi < \eta < \lambda$),

- $\blacktriangleright \ A_\eta \text{ refines } A_\xi : \Longleftrightarrow \forall q \in A_\eta \ \exists p \in A_\xi \ (q \le p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - ► q intersects A : $\iff \forall \xi < \lambda \exists p \in A_{\xi} (q \le p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

```
\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})
```

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$${\sf A}_\eta$$
 refines ${\sf A}_\xi$ (for each $\xi < \eta < \lambda$),

- $\blacktriangleright \ A_\eta \text{ refines } A_\xi : \Longleftrightarrow \forall q \in A_\eta \ \exists p \in A_\xi \ (q \le p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - ► q intersects A : $\iff \forall \xi < \lambda \exists p \in A_{\xi} (q \leq p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

```
\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})
```

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

・ 同 ト ・ ヨ ト ・ ヨ ト

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$$A_\eta$$
 refines A_ξ (for each $\xi < \eta < \lambda$),

- $\blacktriangleright \ A_\eta \text{ refines } A_\xi : \Longleftrightarrow \forall q \in A_\eta \ \exists p \in A_\xi \ (q \le p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - ► q intersects A : $\iff \forall \xi < \lambda \exists p \in A_{\xi} (q \leq p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

$$\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$$

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})$?

We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$$A_\eta$$
 refines A_ξ (for each $\xi < \eta < \lambda$),

- $\blacktriangleright \ A_\eta \text{ refines } A_\xi : \Longleftrightarrow \forall q \in A_\eta \ \exists p \in A_\xi \ (q \le p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - q intersects $\mathcal{A} :\iff \forall \xi < \lambda \ \exists p \in \mathcal{A}_{\xi} \ (q \leq p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

$$\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$$

Is $COM(\mathbb{P}) = FRESH(\mathbb{P})?$

Proposition

 $COM(\mathbb{P}) \subseteq FRESH(\mathbb{P})$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/<\kappa) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)$ /fin is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/{<}\kappa$ is NOT complete.

$$\{\mathfrak{h}\}\subseteq COM(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$$

-∢ ∃ ▶

Proposition

 $\textit{COM}(\mathbb{P}) \subseteq \textit{FRESH}(\mathbb{P})$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/{<\kappa}) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)$ /fin is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/{<}\kappa$ is NOT complete.

$$\{\mathfrak{h}\}\subseteq COM(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$$

• = • •

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

• $FRESH(\mathcal{P}(\kappa)/{<}\kappa) = [\omega, 2^{\kappa}]$ (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/{<}\kappa$ is NOT complete.

$$\{\mathfrak{h}\} \subseteq COM(\mathcal{P}(\omega)/fin) \subseteq [\mathfrak{h},\mathfrak{c}]$$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/{<}\kappa) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/\langle\kappa$ is NOT complete.

 $\{\mathfrak{h}\}\subseteq COM(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/{<}\kappa) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/\langle\kappa$ is NOT complete.

 $\{\mathfrak{h}\}\subseteq \mathit{COM}(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/{<\kappa}) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/\langle \kappa$ is NOT complete.

$$\{\mathfrak{h}\}\subseteq \mathit{COM}(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$$

Thank you for your attention and enjoy the Winter School...

Hejnice 2019

Distributivity (spectrum) of forcing notions

Marlene Koelbing and Wolfgang Wohofsky joint work with Vera Fischer

Universität Wien (Kurt Gödel Research Center)

marlenekoelbing@web.de
wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis 2020, section Set Theory & Topology Hejnice, Czech Republic

27th Jan 2020

Observe that $\mathfrak{h} = \mathfrak{c}$ implies that

$\{\mathfrak{h}\} = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin).$

Theorem

To prove that both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$, we use two kinds of forcings: one adds a distributivity matrix of height ω_1 , the other a distributivity matrix of height ω_2 .

14 / 21

Observe that $\mathfrak{h} = \mathfrak{c}$ implies that

$$\{\mathfrak{h}\} = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin).$$

Theorem

It is consistent that $\mathfrak{h} < \mathfrak{c} = \omega_2$, and

 $[\mathfrak{h},\mathfrak{c}] = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin) = \{\omega_1,\omega_2\}.$

To prove that both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$, we use two kinds of forcings: one adds a distributivity matrix of height ω_1 , the other a distributivity matrix of height ω_2 .

Observe that $\mathfrak{h} = \mathfrak{c}$ implies that

$$\{\mathfrak{h}\} = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin).$$

Theorem

It is consistent that $\mathfrak{h} < \mathfrak{c} = \omega_2$, and

 $[\mathfrak{h},\mathfrak{c}] = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin) = \{\omega_1,\omega_2\}.$

To prove that both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$, we use two kinds of forcings: one adds a distributivity matrix of height ω_1 , the other a distributivity matrix of height ω_2 .

14 / 21

Let $T := \mathfrak{c}^{\langle \omega_2 \rangle}$ and let $T^+ := \{ \sigma \in T : |\sigma| \text{ is a successor} \}$. Define the forcing as follows: ρ is a condition if

- p is a finite function with $dom(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_\sigma := igcup_{
ho \in G} s^{
ho}_{\sigma}$, the matrix is $\{a_\sigma \mid \sigma \in T^+\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{\rho} : \{\rho^{\gamma} \beta \in \operatorname{dom}(\rho) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_\sigma := igcup_{
ho \in G} s^{
ho}_{\sigma}$, the matrix is $\{a_\sigma \mid \sigma \in T^+\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{\rho} : \{\rho^{\gamma} \beta \in \operatorname{dom}(\rho) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_\sigma := igcup_{
ho \in G} s^{
ho}_{\sigma}$, the matrix is $\{a_\sigma \mid \sigma \in T^+\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{\rho} : \{\rho^{\gamma} \beta \in \operatorname{dom}(\rho) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in \mathcal{T}^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{\rho} : \{\rho^{\gamma} \beta \in \operatorname{dom}(\rho) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{\rho} : \{\rho^{\gamma} \beta \in \operatorname{dom}(\rho) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(p)$, $p(\sigma) = (s_{\sigma}^{p}, f_{\sigma}^{p}, h_{\sigma}^{p})$, with $s_{\sigma}^{p} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \text{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{p} : \{\rho^{\gamma} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \geq |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^{p} \leq s_{\sigma}^{q}$, $f_{\sigma}^{p} \subseteq f_{\sigma}^{q}$ and $h_{\sigma}^{p} \subseteq h_{\sigma}^{q}$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\gamma} \alpha) h_{\sigma}^{p} : \{\rho^{\gamma} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \geq |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^{p} \leq s_{\sigma}^{q}$, $f_{\sigma}^{p} \subseteq f_{\sigma}^{q}$ and $h_{\sigma}^{p} \subseteq h_{\sigma}^{q}$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\uparrow} \alpha) h_{\sigma}^{p} : \{\rho^{\uparrow} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_{\sigma})$ and $n = h^p_{\sigma}(\tau)$, we have $p \Vdash a_{\tau} \cap a_{\sigma} \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \geq |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^{p} \leq s_{\sigma}^{q}$, $f_{\sigma}^{p} \subseteq f_{\sigma}^{q}$ and $h_{\sigma}^{p} \subseteq h_{\sigma}^{q}$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\frown} \alpha) h_{\sigma}^{p} : \{\rho^{\frown} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_\sigma)$ and $n = h^p_\sigma(\tau)$, we have $p \Vdash a_\tau \cap a_\sigma \subseteq n$,
- for each $\tau \in \operatorname{dom}(p)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \geq |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^{p} \leq s_{\sigma}^{q}$, $f_{\sigma}^{p} \subseteq f_{\sigma}^{q}$ and $h_{\sigma}^{p} \subseteq h_{\sigma}^{q}$.

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{-}\alpha) h_{\sigma}^{p} : \{\rho^{-}\beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_\sigma)$ and $n = h^p_\sigma(\tau)$, we have $p \Vdash a_\tau \cap a_\sigma \subseteq n$,
- for each $\tau \in \operatorname{dom}(\rho)$ with $\tau \triangleleft \sigma$, $|s_{\tau}^{\rho}| \ge |s_{\sigma}^{\rho}|$.

$q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

イロト 人間ト イヨト イヨト

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\frown} \alpha) h_{\sigma}^{p} : \{\rho^{\frown} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_\sigma)$ and $n = h^p_\sigma(\tau)$, we have $p \Vdash a_\tau \cap a_\sigma \subseteq n$,

• for each
$$\tau \in \operatorname{dom}(p)$$
 with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^{p} \leq s_{\sigma}^{q}$, $f_{\sigma}^{p} \subseteq f_{\sigma}^{q}$ and $h_{\sigma}^{p} \subseteq h_{\sigma}^{q}$.

・ロン ・聞と ・ ほと ・ ほと

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\frown} \alpha) h_{\sigma}^{p} : \{\rho^{\frown} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_\sigma)$ and $n = h^p_\sigma(\tau)$, we have $p \Vdash a_\tau \cap a_\sigma \subseteq n$,

• for each
$$\tau \in \operatorname{dom}(p)$$
 with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$.

イロト 人間ト イヨト イヨト

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

イロト イヨト イヨト イヨト

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

イロト イヨト イヨト イヨト

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω₂} | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω₂}.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

イロト イポト イヨト イヨト

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.

• $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

・ロト ・四ト ・ヨト ・ヨト

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}² | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}².
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

(日) (同) (日) (日) (日)

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

Lemma

The forcing has the c.c.c.

Proof.

This is an easy Δ -system argument.

Lemma

In the final model, the following holds for the generic matrix:

() along branches through $c^{<\omega_2}$ we have \subseteq^* -decreasing sequences,

Prows are almost disjoint families.

Proof.

This follows directly from the definition of the forcing, because the f's and h's ensure it.

Lemma

The forcing has the c.c.c.

Proof.

This is an easy Δ -system argument.

Lemma

In the final model, the following holds for the generic matrix:

1 along branches through $c^{<\omega_2}$ we have \subseteq^* -decreasing sequences,

2 rows are almost disjoint families.

Proof.

This follows directly from the definition of the forcing, because the f's and h's ensure it.

The forcing has the c.c.c.

Proof.

This is an easy Δ -system argument.

Lemma

In the final model, the following holds for the generic matrix:

() along branches through $c^{<\omega_2}$ we have \subseteq^* -decreasing sequences,

rows are almost disjoint families.

Proof.

This follows directly from the definition of the forcing, because the f's and h's ensure it.

- **(())) (())) ())**

The forcing has the c.c.c.

Proof.

This is an easy Δ -system argument.

Lemma

In the final model, the following holds for the generic matrix:

() along branches through $c^{<\omega_2}$ we have \subseteq^* -decreasing sequences,

rows are almost disjoint families.

Proof.

This follows directly from the definition of the forcing, because the f's and h's ensure it.

→ ∃ →

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- rows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- Prows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{\langle \omega_2 \rangle}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{\langle \omega_2 \rangle}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- Prows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- rows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- rows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

▲ 同 ▶ → モ ヨ ▶

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- rows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

Mad We show the following claim, which directly implies that the rows are mad families:

If $\sigma \in \mathfrak{c}^{\alpha}$ for some $\alpha < \omega_2$ and $b \cap a_{\sigma \restriction \beta}$ is infinite for each $\beta \leq \alpha$, then there exists some $i < \mathfrak{c}$ such that $b \cap a_{\sigma \frown i}$ is infinite.

To show this claim, we use a similar argument as for the towers: this time, we use the node $\sigma^{\gamma}\gamma$ (which is not relevant for *b*); it is possible to decide that $m \in b$ and that $m \in a_{\sigma^{\gamma}\gamma}$ for arbitrarily large *m*.

This finishes the generic construction of the distributivity matrix of height ω_2 .

Mad We show the following claim, which directly implies that the rows are mad families:

If $\sigma \in \mathfrak{c}^{\alpha}$ for some $\alpha < \omega_2$ and $b \cap a_{\sigma \restriction \beta}$ is infinite for each $\beta \leq \alpha$, then there exists some $i < \mathfrak{c}$ such that $b \cap a_{\sigma \frown i}$ is infinite.

To show this claim, we use a similar argument as for the towers: this time, we use the node $\sigma^{\gamma}\gamma$ (which is not relevant for *b*); it is possible to decide that $m \in b$ and that $m \in a_{\sigma^{\gamma}\gamma}$ for arbitrarily large *m*.

This finishes the generic construction of the distributivity matrix of height ω_2 .

Mad We show the following claim, which directly implies that the rows are mad families:

If $\sigma \in \mathfrak{c}^{\alpha}$ for some $\alpha < \omega_2$ and $b \cap a_{\sigma \restriction \beta}$ is infinite for each $\beta \leq \alpha$, then there exists some $i < \mathfrak{c}$ such that $b \cap a_{\sigma \frown i}$ is infinite.

To show this claim, we use a similar argument as for the towers: this time, we use the node $\sigma^{\gamma}\gamma$ (which is not relevant for *b*); it is possible to decide that $m \in b$ and that $m \in a_{\sigma^{\gamma}\gamma}$ for arbitrarily large *m*.

This finishes the generic construction of the distributivity matrix of height ω_2 .

Mad We show the following claim, which directly implies that the rows are mad families:

If $\sigma \in \mathfrak{c}^{\alpha}$ for some $\alpha < \omega_2$ and $b \cap a_{\sigma \restriction \beta}$ is infinite for each $\beta \leq \alpha$, then there exists some $i < \mathfrak{c}$ such that $b \cap a_{\sigma \frown i}$ is infinite.

To show this claim, we use a similar argument as for the towers: this time, we use the node $\sigma^{\gamma}\gamma$ (which is not relevant for *b*); it is possible to decide that $m \in b$ and that $m \in a_{\sigma^{\gamma}\gamma}$ for arbitrarily large *m*.

This finishes the generic construction of the distributivity matrix of height ω_2 .

19 / 21

An analogous forcing iteration of length ω_1 works to get a distributivity matrix of height $\omega_1.$

To get a model in which $COM(\mathcal{P}(\omega)/\text{fin}) = \{\omega_1, \omega_2\}$ we start with a model of $\mathfrak{c} = \omega_2$ and combine the two forcings in the iteration; in the end, we have a distributivity matrix of height ω_1 and a distributivity matrix of height ω_2 .

An analogous forcing iteration of length ω_1 works to get a distributivity matrix of height $\omega_1.$

To get a model in which $COM(\mathcal{P}(\omega)/\text{fin}) = \{\omega_1, \omega_2\}$ we start with a model of $\mathfrak{c} = \omega_2$ and combine the two forcings in the iteration; in the end, we have a distributivity matrix of height ω_1 and a distributivity matrix of height ω_2 .

An analogous forcing iteration of length ω_1 works to get a distributivity matrix of height $\omega_1.$

To get a model in which $COM(\mathcal{P}(\omega)/\text{fin}) = \{\omega_1, \omega_2\}$ we start with a model of $\mathfrak{c} = \omega_2$ and combine the two forcings in the iteration; in the end, we have a distributivity matrix of height ω_1 and a distributivity matrix of height ω_2 .

Thank you for your attention and enjoy the Winter School...

Hejnice 2019